Page 1 of 11

Verification Report

Applicant	：BEIJING STRONGLINK TECHNOLOGY CO．，LTD．
Address	A－A－402．Xinyuan Science and Technology Park．Changping Dist．Beijing 102206 China．
Report on the submitted samples said to be：	
Sample Name（s）	MIFARE MODULE
Trade Mark	：STRONGLINK
Part No．	：SL031＿V3．0
Sample Received Date	：March 30， 2023
Testing Period	：March 30， 2023 ～April 07， 2023
Date of Report	：April 07， 2023
Testing Location	901，No． 40 Building，Xialang Industrial Zone，Heshuikou Community， Matian Street，Guangming District，Shenzhen，Guangdong，China
Results	：Please refer to next page（s）．

TEST REQUEST

As specified by client，based on the performed tests on submitted sample，the result of Lead（Pb），Cadmium（Cd），Mercury（Hg），Hexavalent Chromium（Cr（VI）），PBBs，PBDEs， Dibutyl Phthalate（DBP），Butylbenzyl Phthalate（BBP），Di－2－ethylhexyl
Phthalate（DEHP）and Diisobutyl phthalate（DIBP）content comply with the limits set by RoHS Directive 2011／65／EU with amendment（EU）2015／863．

Signed for and on behalf of LCS

Results:

A. EU RoHS Directive 2011/65/EU and its amendment directives

Test method: With reference to IEC 62321-1:2013\&IEC 62321-2:2021\&IEC 62321-3-1:2013, Screening by X-ray Fluorescence Spectroscopy (XRF)

Sample No.	Sample Description	Results						Date of sample submission/ Resubmission
		Cd	Pb	$\mathbf{H g}$	Cr ${ }^{\text {V }}$	$\mathrm{Br}^{\text {V }}$		
						PBBs	PBDEs	
1	Green plastic PCB	BL	BL	BL	BL	X	X	2023-03-30
2	Black plastic chip	BL	BL	BL	BL	BL	BL	2023-03-30
3	Black plastic IC	BL	BL	BL	BL	BL	BL	2023-03-30
4	Silver metal crystal oscillator	BL	BL	BL	BL	/	1	2023-03-30
5	Black plastic patch resistor	BL	BL	BL	BL	BL	BL	2023-03-30
6	Brown plastic patch capacitor	BL	BL	BL	BL	BL	BL	2023-03-30
7	Ferrous metal chip inductor	X	BL	BL	BL	/	/	2023-03-30
8	White plastic patch LED lamp	BL	BL	BL	BL	BL	BL	2023-03-30
9	Yellow plastic capacitor	BL	BL	BL	BL	BL	BL	2023-03-30

Note:

1. Results were obtained by XRF for primary screening, and further chemical testing by $\mathrm{ICP}($ for Cd, Pb, Hg), UV-Vis(for $\mathrm{Cr}(\mathrm{VI})$) and GC-MS(for PBBs, PBDEs) are recommended to be performed, if the concentration exceeds the below warning value according to IEC 62321-3-1:2013(Unit: $\mathrm{mg} / \mathrm{kg}$).

Element	Polymers	Metals	Composite material
Cd	$\mathrm{BL} \leq(70-3 \sigma)<\mathrm{X}<(130+3 \sigma) \leq \mathrm{OL}$	$\mathrm{BL} \leq(70-3 \sigma)<\mathrm{X}<(130+3 \sigma) \leq \mathrm{OL}$	$\mathrm{LOD}<\mathrm{X}<(150+3 \sigma) \leq \mathrm{OL}$
Pb	$\mathrm{BL} \leq(700-3 \sigma)<\mathrm{X}<(1300+3 \sigma) \leq \mathrm{OL}$	$\mathrm{BL} \leq(700-3 \sigma)<\mathrm{X}<(1300+3 \sigma) \leq \mathrm{OL}$	$\mathrm{BL} \leq(500-3 \sigma)<\mathrm{X}<(1500+3 \sigma) \leq \mathrm{OL}$
Hg	$\mathrm{BL} \leq(700-3 \sigma)<\mathrm{X}<(1300+3 \sigma) \leq \mathrm{OL}$	$\mathrm{BL} \leq(700-3 \sigma)<\mathrm{X}<(1300+3 \sigma) \leq \mathrm{OL}$	$\mathrm{BL} \leq(500-3 \sigma)<\mathrm{X}<(1500+3 \sigma) \leq \mathrm{OL}$
Cr	$\mathrm{BL} \leq(700-3 \sigma)<\mathrm{X}$	$\mathrm{BL} \leq(700-3 \sigma)<\mathrm{X}$	$\mathrm{BL} \leq(500-3 \sigma)<\mathrm{X}$
Br	$\mathrm{BL} \leq(300-3 \sigma)<\mathrm{X}$	N / A	$\mathrm{BL} \leq(250-3 \sigma)<\mathrm{X}$

Remark:

- BL= Below Limit
- OL= Over Limit
- $\quad X=$ The range of needing to do further testing
- $3 \sigma=$ The reproducibility of analytical instruments
- N/A= Not applicable
- LOD= Detection limit

2. The XRF screening test for RoHS elements - The reading may be different to the actual content in the sample be of non-uniformity composition.
3. The maximum permissible limit is quoted from the document RoHS Directive $2011 / 65 / \mathrm{EU}$ with amendment (EU) 2015/863.
4. $\quad \boldsymbol{\nabla}=$ For restricted substances PBBs and PBDEs , the results show the total Br content, the restricted substance was $\mathrm{Cr}(\mathrm{VI})$, and the results showed the total Cr content.

RoHS Restricted Substances	Maximum Concentration Value (mg/kg) (by weight in homogenous materials)
Cadmium (Cd)	100
Lead (Pb)	1000
Mercury (Hg)	1000
Hexavalent Chromium(Cr(VI))	1000
Polybrominated biphenyls(PBBs)	1000
Polybrominated diphenylethers(PBDEs)	1000
Dibutyl Phthalate(DBP)	1000
Butylbenzyl Phthalate(BBP)	1000
Di-(2-ethylhexyl) Phthalate(DEHP)	1000
Diisobutyl phthalate(DIBP)	1000

Disclaimers:
This XRF Screening report is for reference purposes only. The applicant shall make its/his/her own judgment as to whether the information provided in this XRF screening report is sufficient for its/his/her purposes. The result shown in this XRF screening report will differ based on various factors, including but not limited to, the sample size, thickness, area, surface flatness, equipment parameters and matrix effect (e.g. plastic, rubber, metal, glass, ceramic etc.). Further wet chemical pre-treatment with relevant chemical equipment analysis are required to obtain quantitative data.

B. EU RoHS Directive 2011/65/EU with amendment (EU) 2015/863 on Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium(Cr(VI)), PBBs, PBDEs, DBP, BBP, DEHP \& DIBP content

Test method:
Lead(Pb) \& Cadmium(Cd) Content:
With reference to IEC 62321-5:2013, by acid digestion and analysis was performed by inductively coupled plasma optical emission spectrometer (ICP-OES) or atomic absorption spectrometer (AAS).

Mercury (Hg) Content:
With reference to IEC 62321-4:2013+AMD1:2017 CSV, by acid digestion and analysis was performed by inductively coupled plasma optical emission spectrometer (ICP-OES).

Hexavalent Chromium($\mathrm{Cr}(\mathrm{VI})$) Content:
With reference to IEC 62321-7-1:2015 or IEC 62321-7-2:2017, analysis was performed by UV-visible spectrophotometer (UV-Vis).

PBBs \& PBDEs Content:
With reference to IEC 62321-6:2015, by solvent extraction and analysis was performed by gas chromatographic-mass spectrometer (GC-MS).

Phthalates(DBP, BBP, DEHP \&DIBP) Content:
With reference to IEC 62321-8:2017, by solvent extraction and analysis was performed by gas chromatographic-mass spectrometer (GC-MS).

1) The test results of Cadmium(Cd)

Tested Items	MDL $(\mathbf{m g} / \mathbf{k g})$	Results $(\mathbf{m g} / \mathbf{k g})$	Limit $\mathbf{(m g / k g)}$
	5	N.D.	100

2) The test results of Phthalates(DBP, BBP, DEHP \&DIBP)

Tested Items	MDL $(\mathbf{m g} / \mathbf{k g})$	Results $(\mathbf{m g} / \mathbf{k g})$	Limit $(\mathbf{m g} / \mathbf{k g})$
Dibutyl Phthalate(DBP) Content	50	N.D.	1000
Butylbenzyl Phthalate(BBP) Content	50	N.D.	1000
Di-(2-ethylhexyl) Phthalate(DEHP) Content	50	N.D.	1000
Diisobutyl phthalate(DIBP) Content	50	N.D.	1000

Tested Items	MDL $(\mathbf{m g} / \mathbf{k g})$	Results $(\mathbf{m g} / \mathbf{k g})$	$\mathbf{L i m i t}$ $\mathbf{(m g / k g)}$
Dibutyl Phthalate(DBP) Content	50	N.D.	$10+5+6+8$

3) The test results of PBBs \& PBDEs

Tested Items	$\underset{(\mathrm{mg} / \mathrm{kg})}{\mathrm{MDL}}$	Results (mg/kg)	$\underset{(\mathrm{mg} / \mathrm{kg})}{\text { Limit }}$
		(1)	
Polybrominated Biphenyls(PBBs) Content			
Monobromobiphenyl	5	N.D.	1
Dibromobiphenyl	5	N.D.	1
Tribromobiphenyl	5	N.D.	1
Tetrabromobiphenyl	5	N.D.	1
Pentabromobiphenyl	5	N.D.	/
Hexabromobiphenyl	5	N.D.	/
Heptabromobiphenyl	5	N.D.	/
Octabromobiphenyl	5	N.D.	1
Nonabromodiphenyl	5	N.D.	/
Decabromodiphenyl	5	N.D.	/
Total content	1	N.D.	1000
Polybrominated Diphenylethers(PBDEs) Content			
Monobromodiphenyl ether	5	N.D.	1
Dibromodiphenyl ether	5	N.D.	/
Tribromodiphenyl ether	5	N.D.	/
Tetrabromodiphenyl ether	5	N.D.	
Pentabromodiphenyl ether	5	N.D.	
Hexabromodiphenyl ether	5	N.D.	/
Heptabromodiphenyl ether	5	N.D.	1
Octabromodiphenyl ether	5	N.D.	/
Nonabromodiphenyl ether	5	N.D.	/
Decabromodiphenyl ether	5	N.D.	/
Total content	/	N.D.	1000

Note:

- \quad MDL $=$ Method Detection Limit
- N.D. $=$ Not Detected $(<\mathrm{MDL})$
- $\quad \mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram
- According to customer's requirement, only the appointed materials have been tested.

Test Process

1. Lead $(\mathrm{Pb}) \&$ Cadmium (Cd) : IEC 62321-5:2013

2. Mercury(Hg): IEC 62321-4:2013+AMD1:2017 CSV

3. Hexavalent Chromium $(\mathrm{Cr}(\mathrm{VI}))$
1) IEC 62321-7-2:2017

2) IEC 62321-7-1:2015

4. Polybrominated Biphenyls(PBBs) \& Polybrominated Diphenyl Ethers(PBDEs) : IEC 62321-6:2015

5. Phthalates(DBP, BBP, DEHP \& DIBP) : IEC 62321-8:2017

The photo(s) of the sample

BLANK

Statement:

1. The test report is invalid without the signature of the approver and the special seal for the company's report;
2. The company name, address and sample information shown on the report were provided by the applicant who should be responsible for the authenticity which are not verified by LCS;
3. The test results in this report are only responsible for the tested samples;
4. Without written approval of LCS, this report can't be reproduced except in full;
5. In case of any discrepancy between the corresponding Chinese and English contents in the test report, the Chinese version shall prevail.
*** End of Report ***
